/*
|
* Copyright 2012 ZXing authors
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#import "ZXByteArray.h"
|
#import "ZXHybridBinarizer.h"
|
#import "ZXIntArray.h"
|
|
// This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
|
// So this is the smallest dimension in each axis we can accept.
|
const int ZX_BLOCK_SIZE_POWER = 3;
|
const int ZX_BLOCK_SIZE = 1 << ZX_BLOCK_SIZE_POWER; // ...0100...00
|
const int ZX_BLOCK_SIZE_MASK = ZX_BLOCK_SIZE - 1; // ...0011...11
|
const int ZX_MINIMUM_DIMENSION = ZX_BLOCK_SIZE * 5;
|
const int ZX_MIN_DYNAMIC_RANGE = 24;
|
|
@interface ZXHybridBinarizer ()
|
|
@property (nonatomic, strong) ZXBitMatrix *matrix;
|
|
@end
|
|
@implementation ZXHybridBinarizer
|
|
/**
|
* Calculates the final BitMatrix once for all requests. This could be called once from the
|
* constructor instead, but there are some advantages to doing it lazily, such as making
|
* profiling easier, and not doing heavy lifting when callers don't expect it.
|
*/
|
- (ZXBitMatrix *)blackMatrixWithError:(NSError **)error {
|
if (self.matrix != nil) {
|
return self.matrix;
|
}
|
ZXLuminanceSource *source = [self luminanceSource];
|
int width = source.width;
|
int height = source.height;
|
if (width >= ZX_MINIMUM_DIMENSION && height >= ZX_MINIMUM_DIMENSION) {
|
ZXByteArray *luminances = source.matrix;
|
int subWidth = width >> ZX_BLOCK_SIZE_POWER;
|
if ((width & ZX_BLOCK_SIZE_MASK) != 0) {
|
subWidth++;
|
}
|
int subHeight = height >> ZX_BLOCK_SIZE_POWER;
|
if ((height & ZX_BLOCK_SIZE_MASK) != 0) {
|
subHeight++;
|
}
|
int **blackPoints = [self calculateBlackPoints:luminances.array subWidth:subWidth subHeight:subHeight width:width height:height];
|
|
ZXBitMatrix *newMatrix = [[ZXBitMatrix alloc] initWithWidth:width height:height];
|
[self calculateThresholdForBlock:luminances.array subWidth:subWidth subHeight:subHeight width:width height:height blackPoints:blackPoints matrix:newMatrix];
|
self.matrix = newMatrix;
|
|
for (int i = 0; i < subHeight; i++) {
|
free(blackPoints[i]);
|
}
|
free(blackPoints);
|
} else {
|
// If the image is too small, fall back to the global histogram approach.
|
self.matrix = [super blackMatrixWithError:error];
|
}
|
return self.matrix;
|
}
|
|
- (ZXBinarizer *)createBinarizer:(ZXLuminanceSource *)source {
|
return [[ZXHybridBinarizer alloc] initWithSource:source];
|
}
|
|
/**
|
* For each block in the image, calculate the average black point using a 5x5 grid
|
* of the blocks around it. Also handles the corner cases (fractional blocks are computed based
|
* on the last pixels in the row/column which are also used in the previous block).
|
*/
|
- (void)calculateThresholdForBlock:(int8_t *)luminances
|
subWidth:(int)subWidth
|
subHeight:(int)subHeight
|
width:(int)width
|
height:(int)height
|
blackPoints:(int **)blackPoints
|
matrix:(ZXBitMatrix *)matrix {
|
for (int y = 0; y < subHeight; y++) {
|
int yoffset = y << ZX_BLOCK_SIZE_POWER;
|
int maxYOffset = height - ZX_BLOCK_SIZE;
|
if (yoffset > maxYOffset) {
|
yoffset = maxYOffset;
|
}
|
for (int x = 0; x < subWidth; x++) {
|
int xoffset = x << ZX_BLOCK_SIZE_POWER;
|
int maxXOffset = width - ZX_BLOCK_SIZE;
|
if (xoffset > maxXOffset) {
|
xoffset = maxXOffset;
|
}
|
int left = [self cap:x min:2 max:subWidth - 3];
|
int top = [self cap:y min:2 max:subHeight - 3];
|
int sum = 0;
|
for (int z = -2; z <= 2; z++) {
|
int *blackRow = blackPoints[top + z];
|
sum += blackRow[left - 2] + blackRow[left - 1] + blackRow[left] + blackRow[left + 1] + blackRow[left + 2];
|
}
|
int average = sum / 25;
|
[self thresholdBlock:luminances xoffset:xoffset yoffset:yoffset threshold:average stride:width matrix:matrix];
|
}
|
}
|
}
|
|
- (int)cap:(int)value min:(int)min max:(int)max {
|
return value < min ? min : value > max ? max : value;
|
}
|
|
/**
|
* Applies a single threshold to a block of pixels.
|
*/
|
- (void)thresholdBlock:(int8_t *)luminances
|
xoffset:(int)xoffset
|
yoffset:(int)yoffset
|
threshold:(int)threshold
|
stride:(int)stride
|
matrix:(ZXBitMatrix *)matrix {
|
for (int y = 0, offset = yoffset * stride + xoffset; y < ZX_BLOCK_SIZE; y++, offset += stride) {
|
for (int x = 0; x < ZX_BLOCK_SIZE; x++) {
|
// Comparison needs to be <= so that black == 0 pixels are black even if the threshold is 0
|
if ((luminances[offset + x] & 0xFF) <= threshold) {
|
[matrix setX:xoffset + x y:yoffset + y];
|
}
|
}
|
}
|
}
|
|
/**
|
* Calculates a single black point for each block of pixels and saves it away.
|
* See the following thread for a discussion of this algorithm:
|
* http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0
|
*/
|
- (int **)calculateBlackPoints:(int8_t *)luminances
|
subWidth:(int)subWidth
|
subHeight:(int)subHeight
|
width:(int)width
|
height:(int)height {
|
int **blackPoints = (int **)malloc(subHeight * sizeof(int *));
|
for (int y = 0; y < subHeight; y++) {
|
blackPoints[y] = (int *)malloc(subWidth * sizeof(int));
|
|
int yoffset = y << ZX_BLOCK_SIZE_POWER;
|
int maxYOffset = height - ZX_BLOCK_SIZE;
|
if (yoffset > maxYOffset) {
|
yoffset = maxYOffset;
|
}
|
for (int x = 0; x < subWidth; x++) {
|
int xoffset = x << ZX_BLOCK_SIZE_POWER;
|
int maxXOffset = width - ZX_BLOCK_SIZE;
|
if (xoffset > maxXOffset) {
|
xoffset = maxXOffset;
|
}
|
int sum = 0;
|
int min = 0xFF;
|
int max = 0;
|
for (int yy = 0, offset = yoffset * width + xoffset; yy < ZX_BLOCK_SIZE; yy++, offset += width) {
|
for (int xx = 0; xx < ZX_BLOCK_SIZE; xx++) {
|
int pixel = luminances[offset + xx] & 0xFF;
|
sum += pixel;
|
// still looking for good contrast
|
if (pixel < min) {
|
min = pixel;
|
}
|
if (pixel > max) {
|
max = pixel;
|
}
|
}
|
// short-circuit min/max tests once dynamic range is met
|
if (max - min > ZX_MIN_DYNAMIC_RANGE) {
|
// finish the rest of the rows quickly
|
for (yy++, offset += width; yy < ZX_BLOCK_SIZE; yy++, offset += width) {
|
for (int xx = 0; xx < ZX_BLOCK_SIZE; xx++) {
|
sum += luminances[offset + xx] & 0xFF;
|
}
|
}
|
}
|
}
|
|
// The default estimate is the average of the values in the block.
|
int average = sum >> (ZX_BLOCK_SIZE_POWER * 2);
|
if (max - min <= ZX_MIN_DYNAMIC_RANGE) {
|
// If variation within the block is low, assume this is a block with only light or only
|
// dark pixels. In that case we do not want to use the average, as it would divide this
|
// low contrast area into black and white pixels, essentially creating data out of noise.
|
//
|
// The default assumption is that the block is light/background. Since no estimate for
|
// the level of dark pixels exists locally, use half the min for the block.
|
average = min / 2;
|
|
if (y > 0 && x > 0) {
|
// Correct the "white background" assumption for blocks that have neighbors by comparing
|
// the pixels in this block to the previously calculated black points. This is based on
|
// the fact that dark barcode symbology is always surrounded by some amount of light
|
// background for which reasonable black point estimates were made. The bp estimated at
|
// the boundaries is used for the interior.
|
|
// The (min < bp) is arbitrary but works better than other heuristics that were tried.
|
int averageNeighborBlackPoint =
|
(blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) + blackPoints[y - 1][x - 1]) / 4;
|
if (min < averageNeighborBlackPoint) {
|
average = averageNeighborBlackPoint;
|
}
|
}
|
}
|
blackPoints[y][x] = average;
|
}
|
}
|
return blackPoints;
|
}
|
|
@end
|