New file |
| | |
| | | using System; |
| | | using System.Collections.Generic; |
| | | using System.Linq; |
| | | using System.Text; |
| | | namespace ZigBee.Common |
| | | { |
| | | public class BigInteger |
| | | { |
| | | // maximum length of the BigInteger in uint (4 bytes) |
| | | // change this to suit the required level of precision. |
| | | |
| | | private const int maxLength = 70; |
| | | |
| | | // primes smaller than 2000 to test the generated prime number |
| | | |
| | | public static readonly int[] primesBelow2000 = { |
| | | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, |
| | | 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, |
| | | 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, |
| | | 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, |
| | | 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, |
| | | 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, |
| | | 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, |
| | | 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, |
| | | 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, |
| | | 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, |
| | | 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, |
| | | 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, |
| | | 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, |
| | | 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, |
| | | 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, |
| | | 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, |
| | | 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, |
| | | 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, |
| | | 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, |
| | | 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 }; |
| | | |
| | | |
| | | private uint[] data = null; // stores bytes from the Big Integer |
| | | public int dataLength; // number of actual chars used |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value for BigInteger is 0 |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger() |
| | | { |
| | | data = new uint[maxLength]; |
| | | dataLength = 1; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by long) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(long value) |
| | | { |
| | | data = new uint[maxLength]; |
| | | long tempVal = value; |
| | | |
| | | // copy bytes from long to BigInteger without any assumption of |
| | | // the length of the long datatype |
| | | |
| | | dataLength = 0; |
| | | while (value != 0 && dataLength < maxLength) |
| | | { |
| | | data[dataLength] = (uint)(value & 0xFFFFFFFF); |
| | | value >>= 32; |
| | | dataLength++; |
| | | } |
| | | |
| | | if (tempVal > 0) // overflow check for +ve value |
| | | { |
| | | if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) |
| | | throw (new ArithmeticException("Positive overflow in constructor.")); |
| | | } |
| | | else if (tempVal < 0) // underflow check for -ve value |
| | | { |
| | | if (value != -1 || (data[dataLength - 1] & 0x80000000) == 0) |
| | | throw (new ArithmeticException("Negative underflow in constructor.")); |
| | | } |
| | | |
| | | if (dataLength == 0) |
| | | dataLength = 1; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by ulong) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(ulong value) |
| | | { |
| | | data = new uint[maxLength]; |
| | | |
| | | // copy bytes from ulong to BigInteger without any assumption of |
| | | // the length of the ulong datatype |
| | | |
| | | dataLength = 0; |
| | | while (value != 0 && dataLength < maxLength) |
| | | { |
| | | data[dataLength] = (uint)(value & 0xFFFFFFFF); |
| | | value >>= 32; |
| | | dataLength++; |
| | | } |
| | | |
| | | if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0) |
| | | throw (new ArithmeticException("Positive overflow in constructor.")); |
| | | |
| | | if (dataLength == 0) |
| | | dataLength = 1; |
| | | } |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by BigInteger) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(BigInteger bi) |
| | | { |
| | | data = new uint[maxLength]; |
| | | |
| | | dataLength = bi.dataLength; |
| | | |
| | | for (int i = 0; i < dataLength; i++) |
| | | data[i] = bi.data[i]; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by a string of digits of the |
| | | // specified base) |
| | | // |
| | | // Example (base 10) |
| | | // ----------------- |
| | | // To initialize "a" with the default value of 1234 in base 10 |
| | | // BigInteger a = new BigInteger("1234", 10) |
| | | // |
| | | // To initialize "a" with the default value of -1234 |
| | | // BigInteger a = new BigInteger("-1234", 10) |
| | | // |
| | | // Example (base 16) |
| | | // ----------------- |
| | | // To initialize "a" with the default value of 0x1D4F in base 16 |
| | | // BigInteger a = new BigInteger("1D4F", 16) |
| | | // |
| | | // To initialize "a" with the default value of -0x1D4F |
| | | // BigInteger a = new BigInteger("-1D4F", 16) |
| | | // |
| | | // Note that string values are specified in the <sign><magnitude> |
| | | // format. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(string value, int radix) |
| | | { |
| | | BigInteger multiplier = new BigInteger(1); |
| | | BigInteger result = new BigInteger(); |
| | | value = (value.ToUpper()).Trim(); |
| | | int limit = 0; |
| | | |
| | | if (value[0] == '-') |
| | | limit = 1; |
| | | |
| | | for (int i = value.Length - 1; i >= limit; i--) |
| | | { |
| | | int posVal = (int)value[i]; |
| | | |
| | | if (posVal >= '0' && posVal <= '9') |
| | | posVal -= '0'; |
| | | else if (posVal >= 'A' && posVal <= 'Z') |
| | | posVal = (posVal - 'A') + 10; |
| | | else |
| | | posVal = 9999999; // arbitrary large |
| | | |
| | | |
| | | if (posVal >= radix) |
| | | throw (new ArithmeticException("Invalid string in constructor.")); |
| | | else |
| | | { |
| | | if (value[0] == '-') |
| | | posVal = -posVal; |
| | | |
| | | result = result + (multiplier * posVal); |
| | | |
| | | if ((i - 1) >= limit) |
| | | multiplier = multiplier * radix; |
| | | } |
| | | } |
| | | |
| | | if (value[0] == '-') // negative values |
| | | { |
| | | if ((result.data[maxLength - 1] & 0x80000000) == 0) |
| | | throw (new ArithmeticException("Negative underflow in constructor.")); |
| | | } |
| | | else // positive values |
| | | { |
| | | if ((result.data[maxLength - 1] & 0x80000000) != 0) |
| | | throw (new ArithmeticException("Positive overflow in constructor.")); |
| | | } |
| | | |
| | | data = new uint[maxLength]; |
| | | for (int i = 0; i < result.dataLength; i++) |
| | | data[i] = result.data[i]; |
| | | |
| | | dataLength = result.dataLength; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by an array of bytes) |
| | | // |
| | | // The lowest index of the input byte array (i.e [0]) should contain the |
| | | // most significant byte of the number, and the highest index should |
| | | // contain the least significant byte. |
| | | // |
| | | // E.g. |
| | | // To initialize "a" with the default value of 0x1D4F in base 16 |
| | | // byte[] temp = { 0x1D, 0x4F }; |
| | | // BigInteger a = new BigInteger(temp) |
| | | // |
| | | // Note that this method of initialization does not allow the |
| | | // sign to be specified. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(byte[] inData) |
| | | { |
| | | dataLength = inData.Length >> 2; |
| | | |
| | | int leftOver = inData.Length & 0x3; |
| | | if (leftOver != 0) // length not multiples of 4 |
| | | dataLength++; |
| | | |
| | | |
| | | if (dataLength > maxLength) |
| | | throw (new ArithmeticException("Byte overflow in constructor.")); |
| | | |
| | | data = new uint[maxLength]; |
| | | |
| | | for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++) |
| | | { |
| | | data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) + |
| | | (inData[i - 1] << 8) + inData[i]); |
| | | } |
| | | |
| | | if (leftOver == 1) |
| | | data[dataLength - 1] = (uint)inData[0]; |
| | | else if (leftOver == 2) |
| | | data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]); |
| | | else if (leftOver == 3) |
| | | data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]); |
| | | |
| | | |
| | | while (dataLength > 1 && data[dataLength - 1] == 0) |
| | | dataLength--; |
| | | |
| | | //Console.WriteLine("Len = " + dataLength); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by an array of bytes of the |
| | | // specified length.) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger(byte[] inData, int inLen) |
| | | { |
| | | dataLength = inLen >> 2; |
| | | |
| | | int leftOver = inLen & 0x3; |
| | | if (leftOver != 0) // length not multiples of 4 |
| | | dataLength++; |
| | | |
| | | if (dataLength > maxLength || inLen > inData.Length) |
| | | throw (new ArithmeticException("Byte overflow in constructor.")); |
| | | |
| | | |
| | | data = new uint[maxLength]; |
| | | |
| | | for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++) |
| | | { |
| | | data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) + |
| | | (inData[i - 1] << 8) + inData[i]); |
| | | } |
| | | |
| | | if (leftOver == 1) |
| | | data[dataLength - 1] = (uint)inData[0]; |
| | | else if (leftOver == 2) |
| | | data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]); |
| | | else if (leftOver == 3) |
| | | data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]); |
| | | |
| | | |
| | | if (dataLength == 0) |
| | | dataLength = 1; |
| | | |
| | | while (dataLength > 1 && data[dataLength - 1] == 0) |
| | | dataLength--; |
| | | |
| | | //Console.WriteLine("Len = " + dataLength); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Constructor (Default value provided by an array of unsigned integers) |
| | | //********************************************************************* |
| | | |
| | | public BigInteger(uint[] inData) |
| | | { |
| | | dataLength = inData.Length; |
| | | |
| | | if (dataLength > maxLength) |
| | | throw (new ArithmeticException("Byte overflow in constructor.")); |
| | | |
| | | data = new uint[maxLength]; |
| | | |
| | | for (int i = dataLength - 1, j = 0; i >= 0; i--, j++) |
| | | data[j] = inData[i]; |
| | | |
| | | while (dataLength > 1 && data[dataLength - 1] == 0) |
| | | dataLength--; |
| | | |
| | | //Console.WriteLine("Len = " + dataLength); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of the typecast operator. |
| | | // For BigInteger bi = 10; |
| | | //*********************************************************************** |
| | | |
| | | public static implicit operator BigInteger(long value) |
| | | { |
| | | return (new BigInteger(value)); |
| | | } |
| | | |
| | | public static implicit operator BigInteger(ulong value) |
| | | { |
| | | return (new BigInteger(value)); |
| | | } |
| | | |
| | | public static implicit operator BigInteger(int value) |
| | | { |
| | | return (new BigInteger((long)value)); |
| | | } |
| | | |
| | | public static implicit operator BigInteger(uint value) |
| | | { |
| | | return (new BigInteger((ulong)value)); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of addition operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator +(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | |
| | | long carry = 0; |
| | | for (int i = 0; i < result.dataLength; i++) |
| | | { |
| | | long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry; |
| | | carry = sum >> 32; |
| | | result.data[i] = (uint)(sum & 0xFFFFFFFF); |
| | | } |
| | | |
| | | if (carry != 0 && result.dataLength < maxLength) |
| | | { |
| | | result.data[result.dataLength] = (uint)(carry); |
| | | result.dataLength++; |
| | | } |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | |
| | | // overflow check |
| | | int lastPos = maxLength - 1; |
| | | if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) && |
| | | (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) |
| | | { |
| | | throw (new ArithmeticException()); |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of the unary ++ operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator ++(BigInteger bi1) |
| | | { |
| | | BigInteger result = new BigInteger(bi1); |
| | | |
| | | long val, carry = 1; |
| | | int index = 0; |
| | | |
| | | while (carry != 0 && index < maxLength) |
| | | { |
| | | val = (long)(result.data[index]); |
| | | val++; |
| | | |
| | | result.data[index] = (uint)(val & 0xFFFFFFFF); |
| | | carry = val >> 32; |
| | | |
| | | index++; |
| | | } |
| | | |
| | | if (index > result.dataLength) |
| | | result.dataLength = index; |
| | | else |
| | | { |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | } |
| | | |
| | | // overflow check |
| | | int lastPos = maxLength - 1; |
| | | |
| | | // overflow if initial value was +ve but ++ caused a sign |
| | | // change to negative. |
| | | |
| | | if ((bi1.data[lastPos] & 0x80000000) == 0 && |
| | | (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) |
| | | { |
| | | throw (new ArithmeticException("Overflow in ++.")); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of subtraction operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator -(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | |
| | | long carryIn = 0; |
| | | for (int i = 0; i < result.dataLength; i++) |
| | | { |
| | | long diff; |
| | | |
| | | diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn; |
| | | result.data[i] = (uint)(diff & 0xFFFFFFFF); |
| | | |
| | | if (diff < 0) |
| | | carryIn = 1; |
| | | else |
| | | carryIn = 0; |
| | | } |
| | | |
| | | // roll over to negative |
| | | if (carryIn != 0) |
| | | { |
| | | for (int i = result.dataLength; i < maxLength; i++) |
| | | result.data[i] = 0xFFFFFFFF; |
| | | result.dataLength = maxLength; |
| | | } |
| | | |
| | | // fixed in v1.03 to give correct datalength for a - (-b) |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | // overflow check |
| | | |
| | | int lastPos = maxLength - 1; |
| | | if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) && |
| | | (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) |
| | | { |
| | | throw (new ArithmeticException()); |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of the unary -- operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator --(BigInteger bi1) |
| | | { |
| | | BigInteger result = new BigInteger(bi1); |
| | | |
| | | long val; |
| | | bool carryIn = true; |
| | | int index = 0; |
| | | |
| | | while (carryIn && index < maxLength) |
| | | { |
| | | val = (long)(result.data[index]); |
| | | val--; |
| | | |
| | | result.data[index] = (uint)(val & 0xFFFFFFFF); |
| | | |
| | | if (val >= 0) |
| | | carryIn = false; |
| | | |
| | | index++; |
| | | } |
| | | |
| | | if (index > result.dataLength) |
| | | result.dataLength = index; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | // overflow check |
| | | int lastPos = maxLength - 1; |
| | | |
| | | // overflow if initial value was -ve but -- caused a sign |
| | | // change to positive. |
| | | |
| | | if ((bi1.data[lastPos] & 0x80000000) != 0 && |
| | | (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) |
| | | { |
| | | throw (new ArithmeticException("Underflow in --.")); |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of multiplication operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator *(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | int lastPos = maxLength - 1; |
| | | bool bi1Neg = false, bi2Neg = false; |
| | | |
| | | // take the absolute value of the inputs |
| | | try |
| | | { |
| | | if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative |
| | | { |
| | | bi1Neg = true; bi1 = -bi1; |
| | | } |
| | | if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative |
| | | { |
| | | bi2Neg = true; bi2 = -bi2; |
| | | } |
| | | } |
| | | catch (Exception) { } |
| | | |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | // multiply the absolute values |
| | | try |
| | | { |
| | | for (int i = 0; i < bi1.dataLength; i++) |
| | | { |
| | | if (bi1.data[i] == 0) continue; |
| | | |
| | | ulong mcarry = 0; |
| | | for (int j = 0, k = i; j < bi2.dataLength; j++, k++) |
| | | { |
| | | // k = i + j |
| | | ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) + |
| | | (ulong)result.data[k] + mcarry; |
| | | |
| | | result.data[k] = (uint)(val & 0xFFFFFFFF); |
| | | mcarry = (val >> 32); |
| | | } |
| | | |
| | | if (mcarry != 0) |
| | | result.data[i + bi2.dataLength] = (uint)mcarry; |
| | | } |
| | | } |
| | | catch (Exception) |
| | | { |
| | | throw (new ArithmeticException("Multiplication overflow.")); |
| | | } |
| | | |
| | | |
| | | result.dataLength = bi1.dataLength + bi2.dataLength; |
| | | if (result.dataLength > maxLength) |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | // overflow check (result is -ve) |
| | | if ((result.data[lastPos] & 0x80000000) != 0) |
| | | { |
| | | if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) // different sign |
| | | { |
| | | // handle the special case where multiplication produces |
| | | // a max negative number in 2's complement. |
| | | |
| | | if (result.dataLength == 1) |
| | | return result; |
| | | else |
| | | { |
| | | bool isMaxNeg = true; |
| | | for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++) |
| | | { |
| | | if (result.data[i] != 0) |
| | | isMaxNeg = false; |
| | | } |
| | | |
| | | if (isMaxNeg) |
| | | return result; |
| | | } |
| | | } |
| | | |
| | | throw (new ArithmeticException("Multiplication overflow.")); |
| | | } |
| | | |
| | | // if input has different signs, then result is -ve |
| | | if (bi1Neg != bi2Neg) |
| | | return -result; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of unary << operators |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator <<(BigInteger bi1, int shiftVal) |
| | | { |
| | | BigInteger result = new BigInteger(bi1); |
| | | result.dataLength = shiftLeft(result.data, shiftVal); |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | // least significant bits at lower part of buffer |
| | | |
| | | private static int shiftLeft(uint[] buffer, int shiftVal) |
| | | { |
| | | int shiftAmount = 32; |
| | | int bufLen = buffer.Length; |
| | | |
| | | while (bufLen > 1 && buffer[bufLen - 1] == 0) |
| | | bufLen--; |
| | | |
| | | for (int count = shiftVal; count > 0;) |
| | | { |
| | | if (count < shiftAmount) |
| | | shiftAmount = count; |
| | | |
| | | //Console.WriteLine("shiftAmount = {0}", shiftAmount); |
| | | |
| | | ulong carry = 0; |
| | | for (int i = 0; i < bufLen; i++) |
| | | { |
| | | ulong val = ((ulong)buffer[i]) << shiftAmount; |
| | | val |= carry; |
| | | |
| | | buffer[i] = (uint)(val & 0xFFFFFFFF); |
| | | carry = val >> 32; |
| | | } |
| | | |
| | | if (carry != 0) |
| | | { |
| | | if (bufLen + 1 <= buffer.Length) |
| | | { |
| | | buffer[bufLen] = (uint)carry; |
| | | bufLen++; |
| | | } |
| | | } |
| | | count -= shiftAmount; |
| | | } |
| | | return bufLen; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of unary >> operators |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator >>(BigInteger bi1, int shiftVal) |
| | | { |
| | | BigInteger result = new BigInteger(bi1); |
| | | result.dataLength = shiftRight(result.data, shiftVal); |
| | | |
| | | |
| | | if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | { |
| | | for (int i = maxLength - 1; i >= result.dataLength; i--) |
| | | result.data[i] = 0xFFFFFFFF; |
| | | |
| | | uint mask = 0x80000000; |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((result.data[result.dataLength - 1] & mask) != 0) |
| | | break; |
| | | |
| | | result.data[result.dataLength - 1] |= mask; |
| | | mask >>= 1; |
| | | } |
| | | result.dataLength = maxLength; |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | private static int shiftRight(uint[] buffer, int shiftVal) |
| | | { |
| | | int shiftAmount = 32; |
| | | int invShift = 0; |
| | | int bufLen = buffer.Length; |
| | | |
| | | while (bufLen > 1 && buffer[bufLen - 1] == 0) |
| | | bufLen--; |
| | | |
| | | //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length); |
| | | |
| | | for (int count = shiftVal; count > 0;) |
| | | { |
| | | if (count < shiftAmount) |
| | | { |
| | | shiftAmount = count; |
| | | invShift = 32 - shiftAmount; |
| | | } |
| | | |
| | | //Console.WriteLine("shiftAmount = {0}", shiftAmount); |
| | | |
| | | ulong carry = 0; |
| | | for (int i = bufLen - 1; i >= 0; i--) |
| | | { |
| | | ulong val = ((ulong)buffer[i]) >> shiftAmount; |
| | | val |= carry; |
| | | |
| | | carry = ((ulong)buffer[i]) << invShift; |
| | | buffer[i] = (uint)(val); |
| | | } |
| | | |
| | | count -= shiftAmount; |
| | | } |
| | | |
| | | while (bufLen > 1 && buffer[bufLen - 1] == 0) |
| | | bufLen--; |
| | | |
| | | return bufLen; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of the NOT operator (1's complement) |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator ~(BigInteger bi1) |
| | | { |
| | | BigInteger result = new BigInteger(bi1); |
| | | |
| | | for (int i = 0; i < maxLength; i++) |
| | | result.data[i] = (uint)(~(bi1.data[i])); |
| | | |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of the NEGATE operator (2's complement) |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator -(BigInteger bi1) |
| | | { |
| | | // handle neg of zero separately since it'll cause an overflow |
| | | // if we proceed. |
| | | |
| | | if (bi1.dataLength == 1 && bi1.data[0] == 0) |
| | | return (new BigInteger()); |
| | | |
| | | BigInteger result = new BigInteger(bi1); |
| | | |
| | | // 1's complement |
| | | for (int i = 0; i < maxLength; i++) |
| | | result.data[i] = (uint)(~(bi1.data[i])); |
| | | |
| | | // add one to result of 1's complement |
| | | long val, carry = 1; |
| | | int index = 0; |
| | | |
| | | while (carry != 0 && index < maxLength) |
| | | { |
| | | val = (long)(result.data[index]); |
| | | val++; |
| | | |
| | | result.data[index] = (uint)(val & 0xFFFFFFFF); |
| | | carry = val >> 32; |
| | | |
| | | index++; |
| | | } |
| | | |
| | | if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000)) |
| | | throw (new ArithmeticException("Overflow in negation.\n")); |
| | | |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of equality operator |
| | | //*********************************************************************** |
| | | |
| | | public static bool operator ==(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | return bi1.Equals(bi2); |
| | | } |
| | | |
| | | |
| | | public static bool operator !=(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | return !(bi1.Equals(bi2)); |
| | | } |
| | | |
| | | |
| | | public override bool Equals(object o) |
| | | { |
| | | BigInteger bi = (BigInteger)o; |
| | | |
| | | if (this.dataLength != bi.dataLength) |
| | | return false; |
| | | |
| | | for (int i = 0; i < this.dataLength; i++) |
| | | { |
| | | if (this.data[i] != bi.data[i]) |
| | | return false; |
| | | } |
| | | return true; |
| | | } |
| | | |
| | | |
| | | public override int GetHashCode() |
| | | { |
| | | return this.ToString().GetHashCode(); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of inequality operator |
| | | //*********************************************************************** |
| | | |
| | | public static bool operator >(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | int pos = maxLength - 1; |
| | | |
| | | // bi1 is negative, bi2 is positive |
| | | if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) |
| | | return false; |
| | | |
| | | // bi1 is positive, bi2 is negative |
| | | else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) |
| | | return true; |
| | | |
| | | // same sign |
| | | int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; |
| | | |
| | | if (pos >= 0) |
| | | { |
| | | if (bi1.data[pos] > bi2.data[pos]) |
| | | return true; |
| | | return false; |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | |
| | | public static bool operator <(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | int pos = maxLength - 1; |
| | | |
| | | // bi1 is negative, bi2 is positive |
| | | if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) |
| | | return true; |
| | | |
| | | // bi1 is positive, bi2 is negative |
| | | else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) |
| | | return false; |
| | | |
| | | // same sign |
| | | int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; |
| | | |
| | | if (pos >= 0) |
| | | { |
| | | if (bi1.data[pos] < bi2.data[pos]) |
| | | return true; |
| | | return false; |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | |
| | | public static bool operator >=(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | return (bi1 == bi2 || bi1 > bi2); |
| | | } |
| | | |
| | | |
| | | public static bool operator <=(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | return (bi1 == bi2 || bi1 < bi2); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Private function that supports the division of two numbers with |
| | | // a divisor that has more than 1 digit. |
| | | // |
| | | // Algorithm taken from [1] |
| | | //*********************************************************************** |
| | | |
| | | private static void multiByteDivide(BigInteger bi1, BigInteger bi2, |
| | | BigInteger outQuotient, BigInteger outRemainder) |
| | | { |
| | | uint[] result = new uint[maxLength]; |
| | | |
| | | int remainderLen = bi1.dataLength + 1; |
| | | uint[] remainder = new uint[remainderLen]; |
| | | |
| | | uint mask = 0x80000000; |
| | | uint val = bi2.data[bi2.dataLength - 1]; |
| | | int shift = 0, resultPos = 0; |
| | | |
| | | while (mask != 0 && (val & mask) == 0) |
| | | { |
| | | shift++; mask >>= 1; |
| | | } |
| | | |
| | | //Console.WriteLine("shift = {0}", shift); |
| | | //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength); |
| | | |
| | | for (int i = 0; i < bi1.dataLength; i++) |
| | | remainder[i] = bi1.data[i]; |
| | | shiftLeft(remainder, shift); |
| | | bi2 = bi2 << shift; |
| | | |
| | | /* |
| | | Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength); |
| | | Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2); |
| | | for(int q = remainderLen - 1; q >= 0; q--) |
| | | Console.Write("{0:x2}", remainder[q]); |
| | | Console.WriteLine(); |
| | | */ |
| | | |
| | | int j = remainderLen - bi2.dataLength; |
| | | int pos = remainderLen - 1; |
| | | |
| | | ulong firstDivisorByte = bi2.data[bi2.dataLength - 1]; |
| | | ulong secondDivisorByte = bi2.data[bi2.dataLength - 2]; |
| | | |
| | | int divisorLen = bi2.dataLength + 1; |
| | | uint[] dividendPart = new uint[divisorLen]; |
| | | |
| | | while (j > 0) |
| | | { |
| | | ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1]; |
| | | //Console.WriteLine("dividend = {0}", dividend); |
| | | |
| | | ulong q_hat = dividend / firstDivisorByte; |
| | | ulong r_hat = dividend % firstDivisorByte; |
| | | |
| | | //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat); |
| | | |
| | | bool done = false; |
| | | while (!done) |
| | | { |
| | | done = true; |
| | | |
| | | if (q_hat == 0x100000000 || |
| | | (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2])) |
| | | { |
| | | q_hat--; |
| | | r_hat += firstDivisorByte; |
| | | |
| | | if (r_hat < 0x100000000) |
| | | done = false; |
| | | } |
| | | } |
| | | |
| | | for (int h = 0; h < divisorLen; h++) |
| | | dividendPart[h] = remainder[pos - h]; |
| | | |
| | | BigInteger kk = new BigInteger(dividendPart); |
| | | BigInteger ss = bi2 * (long)q_hat; |
| | | |
| | | //Console.WriteLine("ss before = " + ss); |
| | | while (ss > kk) |
| | | { |
| | | q_hat--; |
| | | ss -= bi2; |
| | | //Console.WriteLine(ss); |
| | | } |
| | | BigInteger yy = kk - ss; |
| | | |
| | | //Console.WriteLine("ss = " + ss); |
| | | //Console.WriteLine("kk = " + kk); |
| | | //Console.WriteLine("yy = " + yy); |
| | | |
| | | for (int h = 0; h < divisorLen; h++) |
| | | remainder[pos - h] = yy.data[bi2.dataLength - h]; |
| | | |
| | | /* |
| | | Console.WriteLine("dividend = "); |
| | | for(int q = remainderLen - 1; q >= 0; q--) |
| | | Console.Write("{0:x2}", remainder[q]); |
| | | Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat); |
| | | */ |
| | | |
| | | result[resultPos++] = (uint)q_hat; |
| | | |
| | | pos--; |
| | | j--; |
| | | } |
| | | |
| | | outQuotient.dataLength = resultPos; |
| | | int y = 0; |
| | | for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++) |
| | | outQuotient.data[y] = result[x]; |
| | | for (; y < maxLength; y++) |
| | | outQuotient.data[y] = 0; |
| | | |
| | | while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) |
| | | outQuotient.dataLength--; |
| | | |
| | | if (outQuotient.dataLength == 0) |
| | | outQuotient.dataLength = 1; |
| | | |
| | | outRemainder.dataLength = shiftRight(remainder, shift); |
| | | |
| | | for (y = 0; y < outRemainder.dataLength; y++) |
| | | outRemainder.data[y] = remainder[y]; |
| | | for (; y < maxLength; y++) |
| | | outRemainder.data[y] = 0; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Private function that supports the division of two numbers with |
| | | // a divisor that has only 1 digit. |
| | | //*********************************************************************** |
| | | |
| | | private static void singleByteDivide(BigInteger bi1, BigInteger bi2, |
| | | BigInteger outQuotient, BigInteger outRemainder) |
| | | { |
| | | uint[] result = new uint[maxLength]; |
| | | int resultPos = 0; |
| | | |
| | | // copy dividend to reminder |
| | | for (int i = 0; i < maxLength; i++) |
| | | outRemainder.data[i] = bi1.data[i]; |
| | | outRemainder.dataLength = bi1.dataLength; |
| | | |
| | | while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) |
| | | outRemainder.dataLength--; |
| | | |
| | | ulong divisor = (ulong)bi2.data[0]; |
| | | int pos = outRemainder.dataLength - 1; |
| | | ulong dividend = (ulong)outRemainder.data[pos]; |
| | | |
| | | //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend); |
| | | //Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1); |
| | | |
| | | if (dividend >= divisor) |
| | | { |
| | | ulong quotient = dividend / divisor; |
| | | result[resultPos++] = (uint)quotient; |
| | | |
| | | outRemainder.data[pos] = (uint)(dividend % divisor); |
| | | } |
| | | pos--; |
| | | |
| | | while (pos >= 0) |
| | | { |
| | | //Console.WriteLine(pos); |
| | | |
| | | dividend = ((ulong)outRemainder.data[pos + 1] << 32) + (ulong)outRemainder.data[pos]; |
| | | ulong quotient = dividend / divisor; |
| | | result[resultPos++] = (uint)quotient; |
| | | |
| | | outRemainder.data[pos + 1] = 0; |
| | | outRemainder.data[pos--] = (uint)(dividend % divisor); |
| | | //Console.WriteLine(">>>> " + bi1); |
| | | } |
| | | |
| | | outQuotient.dataLength = resultPos; |
| | | int j = 0; |
| | | for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++) |
| | | outQuotient.data[j] = result[i]; |
| | | for (; j < maxLength; j++) |
| | | outQuotient.data[j] = 0; |
| | | |
| | | while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) |
| | | outQuotient.dataLength--; |
| | | |
| | | if (outQuotient.dataLength == 0) |
| | | outQuotient.dataLength = 1; |
| | | |
| | | while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) |
| | | outRemainder.dataLength--; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of division operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator /(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger quotient = new BigInteger(); |
| | | BigInteger remainder = new BigInteger(); |
| | | |
| | | int lastPos = maxLength - 1; |
| | | bool divisorNeg = false, dividendNeg = false; |
| | | |
| | | if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative |
| | | { |
| | | bi1 = -bi1; |
| | | dividendNeg = true; |
| | | } |
| | | if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative |
| | | { |
| | | bi2 = -bi2; |
| | | divisorNeg = true; |
| | | } |
| | | |
| | | if (bi1 < bi2) |
| | | { |
| | | return quotient; |
| | | } |
| | | |
| | | else |
| | | { |
| | | if (bi2.dataLength == 1) |
| | | singleByteDivide(bi1, bi2, quotient, remainder); |
| | | else |
| | | multiByteDivide(bi1, bi2, quotient, remainder); |
| | | |
| | | if (dividendNeg != divisorNeg) |
| | | return -quotient; |
| | | |
| | | return quotient; |
| | | } |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of modulus operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator %(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger quotient = new BigInteger(); |
| | | BigInteger remainder = new BigInteger(bi1); |
| | | |
| | | int lastPos = maxLength - 1; |
| | | bool dividendNeg = false; |
| | | |
| | | if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative |
| | | { |
| | | bi1 = -bi1; |
| | | dividendNeg = true; |
| | | } |
| | | if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative |
| | | bi2 = -bi2; |
| | | |
| | | if (bi1 < bi2) |
| | | { |
| | | return remainder; |
| | | } |
| | | |
| | | else |
| | | { |
| | | if (bi2.dataLength == 1) |
| | | singleByteDivide(bi1, bi2, quotient, remainder); |
| | | else |
| | | multiByteDivide(bi1, bi2, quotient, remainder); |
| | | |
| | | if (dividendNeg) |
| | | return -remainder; |
| | | |
| | | return remainder; |
| | | } |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of bitwise AND operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator &(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | |
| | | for (int i = 0; i < len; i++) |
| | | { |
| | | uint sum = (uint)(bi1.data[i] & bi2.data[i]); |
| | | result.data[i] = sum; |
| | | } |
| | | |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of bitwise OR operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator |(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | |
| | | for (int i = 0; i < len; i++) |
| | | { |
| | | uint sum = (uint)(bi1.data[i] | bi2.data[i]); |
| | | result.data[i] = sum; |
| | | } |
| | | |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Overloading of bitwise XOR operator |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger operator ^(BigInteger bi1, BigInteger bi2) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; |
| | | |
| | | for (int i = 0; i < len; i++) |
| | | { |
| | | uint sum = (uint)(bi1.data[i] ^ bi2.data[i]); |
| | | result.data[i] = sum; |
| | | } |
| | | |
| | | result.dataLength = maxLength; |
| | | |
| | | while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) |
| | | result.dataLength--; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns max(this, bi) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger max(BigInteger bi) |
| | | { |
| | | if (this > bi) |
| | | return (new BigInteger(this)); |
| | | else |
| | | return (new BigInteger(bi)); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns min(this, bi) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger min(BigInteger bi) |
| | | { |
| | | if (this < bi) |
| | | return (new BigInteger(this)); |
| | | else |
| | | return (new BigInteger(bi)); |
| | | |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the absolute value |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger abs() |
| | | { |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) |
| | | return (-this); |
| | | else |
| | | return (new BigInteger(this)); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns a string representing the BigInteger in base 10. |
| | | //*********************************************************************** |
| | | |
| | | public override string ToString() |
| | | { |
| | | return ToString(10); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns a string representing the BigInteger in sign-and-magnitude |
| | | // format in the specified radix. |
| | | // |
| | | // Example |
| | | // ------- |
| | | // If the value of BigInteger is -255 in base 10, then |
| | | // ToString(16) returns "-FF" |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public string ToString(int radix) |
| | | { |
| | | if (radix < 2 || radix > 36) |
| | | throw (new ArgumentException("Radix must be >= 2 and <= 36")); |
| | | |
| | | string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; |
| | | string result = ""; |
| | | |
| | | BigInteger a = this; |
| | | |
| | | bool negative = false; |
| | | if ((a.data[maxLength - 1] & 0x80000000) != 0) |
| | | { |
| | | negative = true; |
| | | try |
| | | { |
| | | a = -a; |
| | | } |
| | | catch (Exception) { } |
| | | } |
| | | |
| | | BigInteger quotient = new BigInteger(); |
| | | BigInteger remainder = new BigInteger(); |
| | | BigInteger biRadix = new BigInteger(radix); |
| | | |
| | | if (a.dataLength == 1 && a.data[0] == 0) |
| | | result = "0"; |
| | | else |
| | | { |
| | | while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0)) |
| | | { |
| | | singleByteDivide(a, biRadix, quotient, remainder); |
| | | |
| | | if (remainder.data[0] < 10) |
| | | result = remainder.data[0] + result; |
| | | else |
| | | result = charSet[(int)remainder.data[0] - 10] + result; |
| | | |
| | | a = quotient; |
| | | } |
| | | if (negative) |
| | | result = "-" + result; |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns a hex string showing the contains of the BigInteger |
| | | // |
| | | // Examples |
| | | // ------- |
| | | // 1) If the value of BigInteger is 255 in base 10, then |
| | | // ToHexString() returns "FF" |
| | | // |
| | | // 2) If the value of BigInteger is -255 in base 10, then |
| | | // ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01", |
| | | // which is the 2's complement representation of -255. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public string ToHexString() |
| | | { |
| | | string result = data[dataLength - 1].ToString("X"); |
| | | |
| | | for (int i = dataLength - 2; i >= 0; i--) |
| | | { |
| | | result += data[i].ToString("X8"); |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Modulo Exponentiation |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger modPow(BigInteger exp, BigInteger n) |
| | | { |
| | | if ((exp.data[maxLength - 1] & 0x80000000) != 0) |
| | | throw (new ArithmeticException("Positive exponents only.")); |
| | | |
| | | BigInteger resultNum = 1; |
| | | BigInteger tempNum; |
| | | bool thisNegative = false; |
| | | |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative this |
| | | { |
| | | tempNum = -this % n; |
| | | thisNegative = true; |
| | | } |
| | | else |
| | | tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k) |
| | | |
| | | if ((n.data[maxLength - 1] & 0x80000000) != 0) // negative n |
| | | n = -n; |
| | | |
| | | // calculate constant = b^(2k) / m |
| | | BigInteger constant = new BigInteger(); |
| | | |
| | | int i = n.dataLength << 1; |
| | | constant.data[i] = 0x00000001; |
| | | constant.dataLength = i + 1; |
| | | |
| | | constant = constant / n; |
| | | int totalBits = exp.bitCount(); |
| | | int count = 0; |
| | | |
| | | // perform squaring and multiply exponentiation |
| | | for (int pos = 0; pos < exp.dataLength; pos++) |
| | | { |
| | | uint mask = 0x01; |
| | | //Console.WriteLine("pos = " + pos); |
| | | |
| | | for (int index = 0; index < 32; index++) |
| | | { |
| | | if ((exp.data[pos] & mask) != 0) |
| | | resultNum = BarrettReduction(resultNum * tempNum, n, constant); |
| | | |
| | | mask <<= 1; |
| | | |
| | | tempNum = BarrettReduction(tempNum * tempNum, n, constant); |
| | | |
| | | |
| | | if (tempNum.dataLength == 1 && tempNum.data[0] == 1) |
| | | { |
| | | if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp |
| | | return -resultNum; |
| | | return resultNum; |
| | | } |
| | | count++; |
| | | if (count == totalBits) |
| | | break; |
| | | } |
| | | } |
| | | |
| | | if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp |
| | | return -resultNum; |
| | | |
| | | return resultNum; |
| | | } |
| | | |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Fast calculation of modular reduction using Barrett's reduction. |
| | | // Requires x < b^(2k), where b is the base. In this case, base is |
| | | // 2^32 (uint). |
| | | // |
| | | // Reference [4] |
| | | //*********************************************************************** |
| | | |
| | | private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) |
| | | { |
| | | int k = n.dataLength, |
| | | kPlusOne = k + 1, |
| | | kMinusOne = k - 1; |
| | | |
| | | BigInteger q1 = new BigInteger(); |
| | | |
| | | // q1 = x / b^(k-1) |
| | | for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++) |
| | | q1.data[j] = x.data[i]; |
| | | q1.dataLength = x.dataLength - kMinusOne; |
| | | if (q1.dataLength <= 0) |
| | | q1.dataLength = 1; |
| | | |
| | | |
| | | BigInteger q2 = q1 * constant; |
| | | BigInteger q3 = new BigInteger(); |
| | | |
| | | // q3 = q2 / b^(k+1) |
| | | for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++) |
| | | q3.data[j] = q2.data[i]; |
| | | q3.dataLength = q2.dataLength - kPlusOne; |
| | | if (q3.dataLength <= 0) |
| | | q3.dataLength = 1; |
| | | |
| | | |
| | | // r1 = x mod b^(k+1) |
| | | // i.e. keep the lowest (k+1) words |
| | | BigInteger r1 = new BigInteger(); |
| | | int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength; |
| | | for (int i = 0; i < lengthToCopy; i++) |
| | | r1.data[i] = x.data[i]; |
| | | r1.dataLength = lengthToCopy; |
| | | |
| | | |
| | | // r2 = (q3 * n) mod b^(k+1) |
| | | // partial multiplication of q3 and n |
| | | |
| | | BigInteger r2 = new BigInteger(); |
| | | for (int i = 0; i < q3.dataLength; i++) |
| | | { |
| | | if (q3.data[i] == 0) continue; |
| | | |
| | | ulong mcarry = 0; |
| | | int t = i; |
| | | for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) |
| | | { |
| | | // t = i + j |
| | | ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) + |
| | | (ulong)r2.data[t] + mcarry; |
| | | |
| | | r2.data[t] = (uint)(val & 0xFFFFFFFF); |
| | | mcarry = (val >> 32); |
| | | } |
| | | |
| | | if (t < kPlusOne) |
| | | r2.data[t] = (uint)mcarry; |
| | | } |
| | | r2.dataLength = kPlusOne; |
| | | while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0) |
| | | r2.dataLength--; |
| | | |
| | | r1 -= r2; |
| | | if ((r1.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | { |
| | | BigInteger val = new BigInteger(); |
| | | val.data[kPlusOne] = 0x00000001; |
| | | val.dataLength = kPlusOne + 1; |
| | | r1 += val; |
| | | } |
| | | |
| | | while (r1 >= n) |
| | | r1 -= n; |
| | | |
| | | return r1; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns gcd(this, bi) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger gcd(BigInteger bi) |
| | | { |
| | | BigInteger x; |
| | | BigInteger y; |
| | | |
| | | if ((data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | x = -this; |
| | | else |
| | | x = this; |
| | | |
| | | if ((bi.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | y = -bi; |
| | | else |
| | | y = bi; |
| | | |
| | | BigInteger g = y; |
| | | |
| | | while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0)) |
| | | { |
| | | g = x; |
| | | x = y % x; |
| | | y = g; |
| | | } |
| | | |
| | | return g; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Populates "this" with the specified amount of random bits |
| | | //*********************************************************************** |
| | | |
| | | public void genRandomBits(int bits, Random rand) |
| | | { |
| | | int dwords = bits >> 5; |
| | | int remBits = bits & 0x1F; |
| | | |
| | | if (remBits != 0) |
| | | dwords++; |
| | | |
| | | if (dwords > maxLength) |
| | | throw (new ArithmeticException("Number of required bits > maxLength.")); |
| | | |
| | | for (int i = 0; i < dwords; i++) |
| | | data[i] = (uint)(rand.NextDouble() * 0x100000000); |
| | | |
| | | for (int i = dwords; i < maxLength; i++) |
| | | data[i] = 0; |
| | | |
| | | if (remBits != 0) |
| | | { |
| | | uint mask = (uint)(0x01 << (remBits - 1)); |
| | | data[dwords - 1] |= mask; |
| | | |
| | | mask = (uint)(0xFFFFFFFF >> (32 - remBits)); |
| | | data[dwords - 1] &= mask; |
| | | } |
| | | else |
| | | data[dwords - 1] |= 0x80000000; |
| | | |
| | | dataLength = dwords; |
| | | |
| | | if (dataLength == 0) |
| | | dataLength = 1; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the position of the most significant bit in the BigInteger. |
| | | // |
| | | // Eg. The result is 0, if the value of BigInteger is 0...0000 0000 |
| | | // The result is 1, if the value of BigInteger is 0...0000 0001 |
| | | // The result is 2, if the value of BigInteger is 0...0000 0010 |
| | | // The result is 2, if the value of BigInteger is 0...0000 0011 |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public int bitCount() |
| | | { |
| | | while (dataLength > 1 && data[dataLength - 1] == 0) |
| | | dataLength--; |
| | | |
| | | uint value = data[dataLength - 1]; |
| | | uint mask = 0x80000000; |
| | | int bits = 32; |
| | | |
| | | while (bits > 0 && (value & mask) == 0) |
| | | { |
| | | bits--; |
| | | mask >>= 1; |
| | | } |
| | | bits += ((dataLength - 1) << 5); |
| | | |
| | | return bits; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Probabilistic prime test based on Fermat's little theorem |
| | | // |
| | | // for any a < p (p does not divide a) if |
| | | // a^(p-1) mod p != 1 then p is not prime. |
| | | // |
| | | // Otherwise, p is probably prime (pseudoprime to the chosen base). |
| | | // |
| | | // Returns |
| | | // ------- |
| | | // True if "this" is a pseudoprime to randomly chosen |
| | | // bases. The number of chosen bases is given by the "confidence" |
| | | // parameter. |
| | | // |
| | | // False if "this" is definitely NOT prime. |
| | | // |
| | | // Note - this method is fast but fails for Carmichael numbers except |
| | | // when the randomly chosen base is a factor of the number. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public bool FermatLittleTest(int confidence) |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | if (thisVal.dataLength == 1) |
| | | { |
| | | // test small numbers |
| | | if (thisVal.data[0] == 0 || thisVal.data[0] == 1) |
| | | return false; |
| | | else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) |
| | | return true; |
| | | } |
| | | |
| | | if ((thisVal.data[0] & 0x1) == 0) // even numbers |
| | | return false; |
| | | |
| | | int bits = thisVal.bitCount(); |
| | | BigInteger a = new BigInteger(); |
| | | BigInteger p_sub1 = thisVal - (new BigInteger(1)); |
| | | Random rand = new Random(); |
| | | |
| | | for (int round = 0; round < confidence; round++) |
| | | { |
| | | bool done = false; |
| | | |
| | | while (!done) // generate a < n |
| | | { |
| | | int testBits = 0; |
| | | |
| | | // make sure "a" has at least 2 bits |
| | | while (testBits < 2) |
| | | testBits = (int)(rand.NextDouble() * bits); |
| | | |
| | | a.genRandomBits(testBits, rand); |
| | | |
| | | int byteLen = a.dataLength; |
| | | |
| | | // make sure "a" is not 0 |
| | | if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) |
| | | done = true; |
| | | } |
| | | |
| | | // check whether a factor exists (fix for version 1.03) |
| | | BigInteger gcdTest = a.gcd(thisVal); |
| | | if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) |
| | | return false; |
| | | |
| | | // calculate a^(p-1) mod p |
| | | BigInteger expResult = a.modPow(p_sub1, thisVal); |
| | | |
| | | int resultLen = expResult.dataLength; |
| | | |
| | | // is NOT prime is a^(p-1) mod p != 1 |
| | | |
| | | if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) |
| | | { |
| | | //Console.WriteLine("a = " + a.ToString()); |
| | | return false; |
| | | } |
| | | } |
| | | |
| | | return true; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Probabilistic prime test based on Rabin-Miller's |
| | | // |
| | | // for any p > 0 with p - 1 = 2^s * t |
| | | // |
| | | // p is probably prime (strong pseudoprime) if for any a < p, |
| | | // 1) a^t mod p = 1 or |
| | | // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 |
| | | // |
| | | // Otherwise, p is composite. |
| | | // |
| | | // Returns |
| | | // ------- |
| | | // True if "this" is a strong pseudoprime to randomly chosen |
| | | // bases. The number of chosen bases is given by the "confidence" |
| | | // parameter. |
| | | // |
| | | // False if "this" is definitely NOT prime. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public bool RabinMillerTest(int confidence) |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | if (thisVal.dataLength == 1) |
| | | { |
| | | // test small numbers |
| | | if (thisVal.data[0] == 0 || thisVal.data[0] == 1) |
| | | return false; |
| | | else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) |
| | | return true; |
| | | } |
| | | |
| | | if ((thisVal.data[0] & 0x1) == 0) // even numbers |
| | | return false; |
| | | |
| | | |
| | | // calculate values of s and t |
| | | BigInteger p_sub1 = thisVal - (new BigInteger(1)); |
| | | int s = 0; |
| | | |
| | | for (int index = 0; index < p_sub1.dataLength; index++) |
| | | { |
| | | uint mask = 0x01; |
| | | |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((p_sub1.data[index] & mask) != 0) |
| | | { |
| | | index = p_sub1.dataLength; // to break the outer loop |
| | | break; |
| | | } |
| | | mask <<= 1; |
| | | s++; |
| | | } |
| | | } |
| | | |
| | | BigInteger t = p_sub1 >> s; |
| | | |
| | | int bits = thisVal.bitCount(); |
| | | BigInteger a = new BigInteger(); |
| | | Random rand = new Random(); |
| | | |
| | | for (int round = 0; round < confidence; round++) |
| | | { |
| | | bool done = false; |
| | | |
| | | while (!done) // generate a < n |
| | | { |
| | | int testBits = 0; |
| | | |
| | | // make sure "a" has at least 2 bits |
| | | while (testBits < 2) |
| | | testBits = (int)(rand.NextDouble() * bits); |
| | | |
| | | a.genRandomBits(testBits, rand); |
| | | |
| | | int byteLen = a.dataLength; |
| | | |
| | | // make sure "a" is not 0 |
| | | if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) |
| | | done = true; |
| | | } |
| | | |
| | | // check whether a factor exists (fix for version 1.03) |
| | | BigInteger gcdTest = a.gcd(thisVal); |
| | | if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) |
| | | return false; |
| | | |
| | | BigInteger b = a.modPow(t, thisVal); |
| | | |
| | | /* |
| | | Console.WriteLine("a = " + a.ToString(10)); |
| | | Console.WriteLine("b = " + b.ToString(10)); |
| | | Console.WriteLine("t = " + t.ToString(10)); |
| | | Console.WriteLine("s = " + s); |
| | | */ |
| | | |
| | | bool result = false; |
| | | |
| | | if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 |
| | | result = true; |
| | | |
| | | for (int j = 0; result == false && j < s; j++) |
| | | { |
| | | if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 |
| | | { |
| | | result = true; |
| | | break; |
| | | } |
| | | |
| | | b = (b * b) % thisVal; |
| | | } |
| | | |
| | | if (result == false) |
| | | return false; |
| | | } |
| | | return true; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) |
| | | // |
| | | // p is probably prime if for any a < p (a is not multiple of p), |
| | | // a^((p-1)/2) mod p = J(a, p) |
| | | // |
| | | // where J is the Jacobi symbol. |
| | | // |
| | | // Otherwise, p is composite. |
| | | // |
| | | // Returns |
| | | // ------- |
| | | // True if "this" is a Euler pseudoprime to randomly chosen |
| | | // bases. The number of chosen bases is given by the "confidence" |
| | | // parameter. |
| | | // |
| | | // False if "this" is definitely NOT prime. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public bool SolovayStrassenTest(int confidence) |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | if (thisVal.dataLength == 1) |
| | | { |
| | | // test small numbers |
| | | if (thisVal.data[0] == 0 || thisVal.data[0] == 1) |
| | | return false; |
| | | else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) |
| | | return true; |
| | | } |
| | | |
| | | if ((thisVal.data[0] & 0x1) == 0) // even numbers |
| | | return false; |
| | | |
| | | |
| | | int bits = thisVal.bitCount(); |
| | | BigInteger a = new BigInteger(); |
| | | BigInteger p_sub1 = thisVal - 1; |
| | | BigInteger p_sub1_shift = p_sub1 >> 1; |
| | | |
| | | Random rand = new Random(); |
| | | |
| | | for (int round = 0; round < confidence; round++) |
| | | { |
| | | bool done = false; |
| | | |
| | | while (!done) // generate a < n |
| | | { |
| | | int testBits = 0; |
| | | |
| | | // make sure "a" has at least 2 bits |
| | | while (testBits < 2) |
| | | testBits = (int)(rand.NextDouble() * bits); |
| | | |
| | | a.genRandomBits(testBits, rand); |
| | | |
| | | int byteLen = a.dataLength; |
| | | |
| | | // make sure "a" is not 0 |
| | | if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) |
| | | done = true; |
| | | } |
| | | |
| | | // check whether a factor exists (fix for version 1.03) |
| | | BigInteger gcdTest = a.gcd(thisVal); |
| | | if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) |
| | | return false; |
| | | |
| | | // calculate a^((p-1)/2) mod p |
| | | |
| | | BigInteger expResult = a.modPow(p_sub1_shift, thisVal); |
| | | if (expResult == p_sub1) |
| | | expResult = -1; |
| | | |
| | | // calculate Jacobi symbol |
| | | BigInteger jacob = Jacobi(a, thisVal); |
| | | |
| | | //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); |
| | | //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); |
| | | |
| | | // if they are different then it is not prime |
| | | if (expResult != jacob) |
| | | return false; |
| | | } |
| | | |
| | | return true; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Implementation of the Lucas Strong Pseudo Prime test. |
| | | // |
| | | // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d |
| | | // with d odd and s >= 0. |
| | | // |
| | | // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n |
| | | // is a strong Lucas pseudoprime with parameters (P, Q). We select |
| | | // P and Q based on Selfridge. |
| | | // |
| | | // Returns True if number is a strong Lucus pseudo prime. |
| | | // Otherwise, returns False indicating that number is composite. |
| | | //*********************************************************************** |
| | | |
| | | public bool LucasStrongTest() |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | if (thisVal.dataLength == 1) |
| | | { |
| | | // test small numbers |
| | | if (thisVal.data[0] == 0 || thisVal.data[0] == 1) |
| | | return false; |
| | | else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) |
| | | return true; |
| | | } |
| | | |
| | | if ((thisVal.data[0] & 0x1) == 0) // even numbers |
| | | return false; |
| | | |
| | | return LucasStrongTestHelper(thisVal); |
| | | } |
| | | |
| | | |
| | | private bool LucasStrongTestHelper(BigInteger thisVal) |
| | | { |
| | | // Do the test (selects D based on Selfridge) |
| | | // Let D be the first element of the sequence |
| | | // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 |
| | | // Let P = 1, Q = (1-D) / 4 |
| | | |
| | | long D = 5, sign = -1, dCount = 0; |
| | | bool done = false; |
| | | |
| | | while (!done) |
| | | { |
| | | int Jresult = BigInteger.Jacobi(D, thisVal); |
| | | |
| | | if (Jresult == -1) |
| | | done = true; // J(D, this) = 1 |
| | | else |
| | | { |
| | | if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found |
| | | return false; |
| | | |
| | | if (dCount == 20) |
| | | { |
| | | // check for square |
| | | BigInteger root = thisVal.sqrt(); |
| | | if (root * root == thisVal) |
| | | return false; |
| | | } |
| | | |
| | | //Console.WriteLine(D); |
| | | D = (Math.Abs(D) + 2) * sign; |
| | | sign = -sign; |
| | | } |
| | | dCount++; |
| | | } |
| | | |
| | | long Q = (1 - D) >> 2; |
| | | |
| | | /* |
| | | Console.WriteLine("D = " + D); |
| | | Console.WriteLine("Q = " + Q); |
| | | Console.WriteLine("(n,D) = " + thisVal.gcd(D)); |
| | | Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); |
| | | Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); |
| | | */ |
| | | |
| | | BigInteger p_add1 = thisVal + 1; |
| | | int s = 0; |
| | | |
| | | for (int index = 0; index < p_add1.dataLength; index++) |
| | | { |
| | | uint mask = 0x01; |
| | | |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((p_add1.data[index] & mask) != 0) |
| | | { |
| | | index = p_add1.dataLength; // to break the outer loop |
| | | break; |
| | | } |
| | | mask <<= 1; |
| | | s++; |
| | | } |
| | | } |
| | | |
| | | BigInteger t = p_add1 >> s; |
| | | |
| | | // calculate constant = b^(2k) / m |
| | | // for Barrett Reduction |
| | | BigInteger constant = new BigInteger(); |
| | | |
| | | int nLen = thisVal.dataLength << 1; |
| | | constant.data[nLen] = 0x00000001; |
| | | constant.dataLength = nLen + 1; |
| | | |
| | | constant = constant / thisVal; |
| | | |
| | | BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); |
| | | bool isPrime = false; |
| | | |
| | | if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) || |
| | | (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) |
| | | { |
| | | // u(t) = 0 or V(t) = 0 |
| | | isPrime = true; |
| | | } |
| | | |
| | | for (int i = 1; i < s; i++) |
| | | { |
| | | if (!isPrime) |
| | | { |
| | | // doubling of index |
| | | lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); |
| | | lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; |
| | | |
| | | //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; |
| | | |
| | | if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) |
| | | isPrime = true; |
| | | } |
| | | |
| | | lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k |
| | | } |
| | | |
| | | |
| | | if (isPrime) // additional checks for composite numbers |
| | | { |
| | | // If n is prime and gcd(n, Q) == 1, then |
| | | // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n |
| | | |
| | | BigInteger g = thisVal.gcd(Q); |
| | | if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1 |
| | | { |
| | | if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0) |
| | | lucas[2] += thisVal; |
| | | |
| | | BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal; |
| | | if ((temp.data[maxLength - 1] & 0x80000000) != 0) |
| | | temp += thisVal; |
| | | |
| | | if (lucas[2] != temp) |
| | | isPrime = false; |
| | | } |
| | | } |
| | | |
| | | return isPrime; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Determines whether a number is probably prime, using the Rabin-Miller's |
| | | // test. Before applying the test, the number is tested for divisibility |
| | | // by primes < 2000 |
| | | // |
| | | // Returns true if number is probably prime. |
| | | //*********************************************************************** |
| | | |
| | | public bool isProbablePrime(int confidence) |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | |
| | | // test for divisibility by primes < 2000 |
| | | for (int p = 0; p < primesBelow2000.Length; p++) |
| | | { |
| | | BigInteger divisor = primesBelow2000[p]; |
| | | |
| | | if (divisor >= thisVal) |
| | | break; |
| | | |
| | | BigInteger resultNum = thisVal % divisor; |
| | | if (resultNum.IntValue() == 0) |
| | | { |
| | | /* |
| | | Console.WriteLine("Not prime! Divisible by {0}\n", |
| | | primesBelow2000[p]); |
| | | */ |
| | | return false; |
| | | } |
| | | } |
| | | |
| | | if (thisVal.RabinMillerTest(confidence)) |
| | | return true; |
| | | else |
| | | { |
| | | //Console.WriteLine("Not prime! Failed primality test\n"); |
| | | return false; |
| | | } |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Determines whether this BigInteger is probably prime using a |
| | | // combination of base 2 strong pseudoprime test and Lucas strong |
| | | // pseudoprime test. |
| | | // |
| | | // The sequence of the primality test is as follows, |
| | | // |
| | | // 1) Trial divisions are carried out using prime numbers below 2000. |
| | | // if any of the primes divides this BigInteger, then it is not prime. |
| | | // |
| | | // 2) Perform base 2 strong pseudoprime test. If this BigInteger is a |
| | | // base 2 strong pseudoprime, proceed on to the next step. |
| | | // |
| | | // 3) Perform strong Lucas pseudoprime test. |
| | | // |
| | | // Returns True if this BigInteger is both a base 2 strong pseudoprime |
| | | // and a strong Lucas pseudoprime. |
| | | // |
| | | // For a detailed discussion of this primality test, see [6]. |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public bool isProbablePrime() |
| | | { |
| | | BigInteger thisVal; |
| | | if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative |
| | | thisVal = -this; |
| | | else |
| | | thisVal = this; |
| | | |
| | | if (thisVal.dataLength == 1) |
| | | { |
| | | // test small numbers |
| | | if (thisVal.data[0] == 0 || thisVal.data[0] == 1) |
| | | return false; |
| | | else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) |
| | | return true; |
| | | } |
| | | |
| | | if ((thisVal.data[0] & 0x1) == 0) // even numbers |
| | | return false; |
| | | |
| | | |
| | | // test for divisibility by primes < 2000 |
| | | for (int p = 0; p < primesBelow2000.Length; p++) |
| | | { |
| | | BigInteger divisor = primesBelow2000[p]; |
| | | |
| | | if (divisor >= thisVal) |
| | | break; |
| | | |
| | | BigInteger resultNum = thisVal % divisor; |
| | | if (resultNum.IntValue() == 0) |
| | | { |
| | | //Console.WriteLine("Not prime! Divisible by {0}\n", |
| | | // primesBelow2000[p]); |
| | | |
| | | return false; |
| | | } |
| | | } |
| | | |
| | | // Perform BASE 2 Rabin-Miller Test |
| | | |
| | | // calculate values of s and t |
| | | BigInteger p_sub1 = thisVal - (new BigInteger(1)); |
| | | int s = 0; |
| | | |
| | | for (int index = 0; index < p_sub1.dataLength; index++) |
| | | { |
| | | uint mask = 0x01; |
| | | |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((p_sub1.data[index] & mask) != 0) |
| | | { |
| | | index = p_sub1.dataLength; // to break the outer loop |
| | | break; |
| | | } |
| | | mask <<= 1; |
| | | s++; |
| | | } |
| | | } |
| | | |
| | | BigInteger t = p_sub1 >> s; |
| | | |
| | | int bits = thisVal.bitCount(); |
| | | BigInteger a = 2; |
| | | |
| | | // b = a^t mod p |
| | | BigInteger b = a.modPow(t, thisVal); |
| | | bool result = false; |
| | | |
| | | if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 |
| | | result = true; |
| | | |
| | | for (int j = 0; result == false && j < s; j++) |
| | | { |
| | | if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 |
| | | { |
| | | result = true; |
| | | break; |
| | | } |
| | | |
| | | b = (b * b) % thisVal; |
| | | } |
| | | |
| | | // if number is strong pseudoprime to base 2, then do a strong lucas test |
| | | if (result) |
| | | result = LucasStrongTestHelper(thisVal); |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the lowest 4 bytes of the BigInteger as an int. |
| | | //*********************************************************************** |
| | | |
| | | public int IntValue() |
| | | { |
| | | return (int)data[0]; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the lowest 8 bytes of the BigInteger as a long. |
| | | //*********************************************************************** |
| | | |
| | | public long LongValue() |
| | | { |
| | | long val = 0; |
| | | |
| | | val = (long)data[0]; |
| | | try |
| | | { // exception if maxLength = 1 |
| | | val |= (long)data[1] << 32; |
| | | } |
| | | catch (Exception) |
| | | { |
| | | if ((data[0] & 0x80000000) != 0) // negative |
| | | val = (int)data[0]; |
| | | } |
| | | |
| | | return val; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Computes the Jacobi Symbol for a and b. |
| | | // Algorithm adapted from [3] and [4] with some optimizations |
| | | //*********************************************************************** |
| | | |
| | | public static int Jacobi(BigInteger a, BigInteger b) |
| | | { |
| | | // Jacobi defined only for odd integers |
| | | if ((b.data[0] & 0x1) == 0) |
| | | throw (new ArgumentException("Jacobi defined only for odd integers.")); |
| | | |
| | | if (a >= b) a %= b; |
| | | if (a.dataLength == 1 && a.data[0] == 0) return 0; // a == 0 |
| | | if (a.dataLength == 1 && a.data[0] == 1) return 1; // a == 1 |
| | | |
| | | if (a < 0) |
| | | { |
| | | if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0) |
| | | return Jacobi(-a, b); |
| | | else |
| | | return -Jacobi(-a, b); |
| | | } |
| | | |
| | | int e = 0; |
| | | for (int index = 0; index < a.dataLength; index++) |
| | | { |
| | | uint mask = 0x01; |
| | | |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((a.data[index] & mask) != 0) |
| | | { |
| | | index = a.dataLength; // to break the outer loop |
| | | break; |
| | | } |
| | | mask <<= 1; |
| | | e++; |
| | | } |
| | | } |
| | | |
| | | BigInteger a1 = a >> e; |
| | | |
| | | int s = 1; |
| | | if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5)) |
| | | s = -1; |
| | | |
| | | if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3) |
| | | s = -s; |
| | | |
| | | if (a1.dataLength == 1 && a1.data[0] == 1) |
| | | return s; |
| | | else |
| | | return (s * Jacobi(b % a1, a1)); |
| | | } |
| | | |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Generates a positive BigInteger that is probably prime. |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger genPseudoPrime(int bits, int confidence, Random rand) |
| | | { |
| | | BigInteger result = new BigInteger(); |
| | | bool done = false; |
| | | |
| | | while (!done) |
| | | { |
| | | result.genRandomBits(bits, rand); |
| | | result.data[0] |= 0x01; // make it odd |
| | | |
| | | // prime test |
| | | done = result.isProbablePrime(confidence); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Generates a random number with the specified number of bits such |
| | | // that gcd(number, this) = 1 |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger genCoPrime(int bits, Random rand) |
| | | { |
| | | bool done = false; |
| | | BigInteger result = new BigInteger(); |
| | | |
| | | while (!done) |
| | | { |
| | | result.genRandomBits(bits, rand); |
| | | //Console.WriteLine(result.ToString(16)); |
| | | |
| | | // gcd test |
| | | BigInteger g = result.gcd(this); |
| | | if (g.dataLength == 1 && g.data[0] == 1) |
| | | done = true; |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the modulo inverse of this. Throws ArithmeticException if |
| | | // the inverse does not exist. (i.e. gcd(this, modulus) != 1) |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger modInverse(BigInteger modulus) |
| | | { |
| | | BigInteger[] p = { 0, 1 }; |
| | | BigInteger[] q = new BigInteger[2]; // quotients |
| | | BigInteger[] r = { 0, 0 }; // remainders |
| | | |
| | | int step = 0; |
| | | |
| | | BigInteger a = modulus; |
| | | BigInteger b = this; |
| | | |
| | | while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0)) |
| | | { |
| | | BigInteger quotient = new BigInteger(); |
| | | BigInteger remainder = new BigInteger(); |
| | | |
| | | if (step > 1) |
| | | { |
| | | BigInteger pval = (p[0] - (p[1] * q[0])) % modulus; |
| | | p[0] = p[1]; |
| | | p[1] = pval; |
| | | } |
| | | |
| | | if (b.dataLength == 1) |
| | | singleByteDivide(a, b, quotient, remainder); |
| | | else |
| | | multiByteDivide(a, b, quotient, remainder); |
| | | |
| | | /* |
| | | Console.WriteLine(quotient.dataLength); |
| | | Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10), |
| | | b.ToString(10), quotient.ToString(10), remainder.ToString(10), |
| | | p[1].ToString(10)); |
| | | */ |
| | | |
| | | q[0] = q[1]; |
| | | r[0] = r[1]; |
| | | q[1] = quotient; r[1] = remainder; |
| | | |
| | | a = b; |
| | | b = remainder; |
| | | |
| | | step++; |
| | | } |
| | | |
| | | if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1)) |
| | | throw (new ArithmeticException("No inverse!")); |
| | | |
| | | BigInteger result = ((p[0] - (p[1] * q[0])) % modulus); |
| | | |
| | | if ((result.data[maxLength - 1] & 0x80000000) != 0) |
| | | result += modulus; // get the least positive modulus |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the value of the BigInteger as a byte array. The lowest |
| | | // index contains the MSB. |
| | | //*********************************************************************** |
| | | |
| | | public byte[] getBytes() |
| | | { |
| | | int numBits = bitCount(); |
| | | |
| | | int numBytes = numBits >> 3; |
| | | if ((numBits & 0x7) != 0) |
| | | numBytes++; |
| | | |
| | | byte[] result = new byte[numBytes]; |
| | | |
| | | //Console.WriteLine(result.Length); |
| | | |
| | | int pos = 0; |
| | | uint tempVal, val = data[dataLength - 1]; |
| | | |
| | | if ((tempVal = (val >> 24 & 0xFF)) != 0) |
| | | result[pos++] = (byte)tempVal; |
| | | if ((tempVal = (val >> 16 & 0xFF)) != 0) |
| | | result[pos++] = (byte)tempVal; |
| | | if ((tempVal = (val >> 8 & 0xFF)) != 0) |
| | | result[pos++] = (byte)tempVal; |
| | | if ((tempVal = (val & 0xFF)) != 0) |
| | | result[pos++] = (byte)tempVal; |
| | | |
| | | for (int i = dataLength - 2; i >= 0; i--, pos += 4) |
| | | { |
| | | val = data[i]; |
| | | result[pos + 3] = (byte)(val & 0xFF); |
| | | val >>= 8; |
| | | result[pos + 2] = (byte)(val & 0xFF); |
| | | val >>= 8; |
| | | result[pos + 1] = (byte)(val & 0xFF); |
| | | val >>= 8; |
| | | result[pos] = (byte)(val & 0xFF); |
| | | } |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Sets the value of the specified bit to 1 |
| | | // The Least Significant Bit position is 0. |
| | | //*********************************************************************** |
| | | |
| | | public void setBit(uint bitNum) |
| | | { |
| | | uint bytePos = bitNum >> 5; // divide by 32 |
| | | byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits |
| | | |
| | | uint mask = (uint)1 << bitPos; |
| | | this.data[bytePos] |= mask; |
| | | |
| | | if (bytePos >= this.dataLength) |
| | | this.dataLength = (int)bytePos + 1; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Sets the value of the specified bit to 0 |
| | | // The Least Significant Bit position is 0. |
| | | //*********************************************************************** |
| | | |
| | | public void unsetBit(uint bitNum) |
| | | { |
| | | uint bytePos = bitNum >> 5; |
| | | |
| | | if (bytePos < this.dataLength) |
| | | { |
| | | byte bitPos = (byte)(bitNum & 0x1F); |
| | | |
| | | uint mask = (uint)1 << bitPos; |
| | | uint mask2 = 0xFFFFFFFF ^ mask; |
| | | |
| | | this.data[bytePos] &= mask2; |
| | | |
| | | if (this.dataLength > 1 && this.data[this.dataLength - 1] == 0) |
| | | this.dataLength--; |
| | | } |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns a value that is equivalent to the integer square root |
| | | // of the BigInteger. |
| | | // |
| | | // The integer square root of "this" is defined as the largest integer n |
| | | // such that (n * n) <= this |
| | | // |
| | | //*********************************************************************** |
| | | |
| | | public BigInteger sqrt() |
| | | { |
| | | uint numBits = (uint)this.bitCount(); |
| | | |
| | | if ((numBits & 0x1) != 0) // odd number of bits |
| | | numBits = (numBits >> 1) + 1; |
| | | else |
| | | numBits = (numBits >> 1); |
| | | |
| | | uint bytePos = numBits >> 5; |
| | | byte bitPos = (byte)(numBits & 0x1F); |
| | | |
| | | uint mask; |
| | | |
| | | BigInteger result = new BigInteger(); |
| | | if (bitPos == 0) |
| | | mask = 0x80000000; |
| | | else |
| | | { |
| | | mask = (uint)1 << bitPos; |
| | | bytePos++; |
| | | } |
| | | result.dataLength = (int)bytePos; |
| | | |
| | | for (int i = (int)bytePos - 1; i >= 0; i--) |
| | | { |
| | | while (mask != 0) |
| | | { |
| | | // guess |
| | | result.data[i] ^= mask; |
| | | |
| | | // undo the guess if its square is larger than this |
| | | if ((result * result) > this) |
| | | result.data[i] ^= mask; |
| | | |
| | | mask >>= 1; |
| | | } |
| | | mask = 0x80000000; |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Returns the k_th number in the Lucas Sequence reduced modulo n. |
| | | // |
| | | // Uses index doubling to speed up the process. For example, to calculate V(k), |
| | | // we maintain two numbers in the sequence V(n) and V(n+1). |
| | | // |
| | | // To obtain V(2n), we use the identity |
| | | // V(2n) = (V(n) * V(n)) - (2 * Q^n) |
| | | // To obtain V(2n+1), we first write it as |
| | | // V(2n+1) = V((n+1) + n) |
| | | // and use the identity |
| | | // V(m+n) = V(m) * V(n) - Q * V(m-n) |
| | | // Hence, |
| | | // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n) |
| | | // = V(n+1) * V(n) - Q^n * V(1) |
| | | // = V(n+1) * V(n) - Q^n * P |
| | | // |
| | | // We use k in its binary expansion and perform index doubling for each |
| | | // bit position. For each bit position that is set, we perform an |
| | | // index doubling followed by an index addition. This means that for V(n), |
| | | // we need to update it to V(2n+1). For V(n+1), we need to update it to |
| | | // V((2n+1)+1) = V(2*(n+1)) |
| | | // |
| | | // This function returns |
| | | // [0] = U(k) |
| | | // [1] = V(k) |
| | | // [2] = Q^n |
| | | // |
| | | // Where U(0) = 0 % n, U(1) = 1 % n |
| | | // V(0) = 2 % n, V(1) = P % n |
| | | //*********************************************************************** |
| | | |
| | | public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q, |
| | | BigInteger k, BigInteger n) |
| | | { |
| | | if (k.dataLength == 1 && k.data[0] == 0) |
| | | { |
| | | BigInteger[] result = new BigInteger[3]; |
| | | |
| | | result[0] = 0; result[1] = 2 % n; result[2] = 1 % n; |
| | | return result; |
| | | } |
| | | |
| | | // calculate constant = b^(2k) / m |
| | | // for Barrett Reduction |
| | | BigInteger constant = new BigInteger(); |
| | | |
| | | int nLen = n.dataLength << 1; |
| | | constant.data[nLen] = 0x00000001; |
| | | constant.dataLength = nLen + 1; |
| | | |
| | | constant = constant / n; |
| | | |
| | | // calculate values of s and t |
| | | int s = 0; |
| | | |
| | | for (int index = 0; index < k.dataLength; index++) |
| | | { |
| | | uint mask = 0x01; |
| | | |
| | | for (int i = 0; i < 32; i++) |
| | | { |
| | | if ((k.data[index] & mask) != 0) |
| | | { |
| | | index = k.dataLength; // to break the outer loop |
| | | break; |
| | | } |
| | | mask <<= 1; |
| | | s++; |
| | | } |
| | | } |
| | | |
| | | BigInteger t = k >> s; |
| | | |
| | | //Console.WriteLine("s = " + s + " t = " + t); |
| | | return LucasSequenceHelper(P, Q, t, n, constant, s); |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Performs the calculation of the kth term in the Lucas Sequence. |
| | | // For details of the algorithm, see reference [9]. |
| | | // |
| | | // k must be odd. i.e LSB == 1 |
| | | //*********************************************************************** |
| | | |
| | | private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q, |
| | | BigInteger k, BigInteger n, |
| | | BigInteger constant, int s) |
| | | { |
| | | BigInteger[] result = new BigInteger[3]; |
| | | |
| | | if ((k.data[0] & 0x00000001) == 0) |
| | | throw (new ArgumentException("Argument k must be odd.")); |
| | | |
| | | int numbits = k.bitCount(); |
| | | uint mask = (uint)0x1 << ((numbits & 0x1F) - 1); |
| | | |
| | | // v = v0, v1 = v1, u1 = u1, Q_k = Q^0 |
| | | |
| | | BigInteger v = 2 % n, Q_k = 1 % n, |
| | | v1 = P % n, u1 = Q_k; |
| | | bool flag = true; |
| | | |
| | | for (int i = k.dataLength - 1; i >= 0; i--) // iterate on the binary expansion of k |
| | | { |
| | | //Console.WriteLine("round"); |
| | | while (mask != 0) |
| | | { |
| | | if (i == 0 && mask == 0x00000001) // last bit |
| | | break; |
| | | |
| | | if ((k.data[i] & mask) != 0) // bit is set |
| | | { |
| | | // index doubling with addition |
| | | |
| | | u1 = (u1 * v1) % n; |
| | | |
| | | v = ((v * v1) - (P * Q_k)) % n; |
| | | v1 = n.BarrettReduction(v1 * v1, n, constant); |
| | | v1 = (v1 - ((Q_k * Q) << 1)) % n; |
| | | |
| | | if (flag) |
| | | flag = false; |
| | | else |
| | | Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); |
| | | |
| | | Q_k = (Q_k * Q) % n; |
| | | } |
| | | else |
| | | { |
| | | // index doubling |
| | | u1 = ((u1 * v) - Q_k) % n; |
| | | |
| | | v1 = ((v * v1) - (P * Q_k)) % n; |
| | | v = n.BarrettReduction(v * v, n, constant); |
| | | v = (v - (Q_k << 1)) % n; |
| | | |
| | | if (flag) |
| | | { |
| | | Q_k = Q % n; |
| | | flag = false; |
| | | } |
| | | else |
| | | Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); |
| | | } |
| | | |
| | | mask >>= 1; |
| | | } |
| | | mask = 0x80000000; |
| | | } |
| | | |
| | | // at this point u1 = u(n+1) and v = v(n) |
| | | // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1) |
| | | |
| | | u1 = ((u1 * v) - Q_k) % n; |
| | | v = ((v * v1) - (P * Q_k)) % n; |
| | | if (flag) |
| | | flag = false; |
| | | else |
| | | Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); |
| | | |
| | | Q_k = (Q_k * Q) % n; |
| | | |
| | | |
| | | for (int i = 0; i < s; i++) |
| | | { |
| | | // index doubling |
| | | u1 = (u1 * v) % n; |
| | | v = ((v * v) - (Q_k << 1)) % n; |
| | | |
| | | if (flag) |
| | | { |
| | | Q_k = Q % n; |
| | | flag = false; |
| | | } |
| | | else |
| | | Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); |
| | | } |
| | | |
| | | result[0] = u1; |
| | | result[1] = v; |
| | | result[2] = Q_k; |
| | | |
| | | return result; |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Tests the correct implementation of the /, %, * and + operators |
| | | //*********************************************************************** |
| | | |
| | | public static void MulDivTest(int rounds) |
| | | { |
| | | Random rand = new Random(); |
| | | byte[] val = new byte[64]; |
| | | byte[] val2 = new byte[64]; |
| | | |
| | | for (int count = 0; count < rounds; count++) |
| | | { |
| | | // generate 2 numbers of random length |
| | | int t1 = 0; |
| | | while (t1 == 0) |
| | | t1 = (int)(rand.NextDouble() * 65); |
| | | |
| | | int t2 = 0; |
| | | while (t2 == 0) |
| | | t2 = (int)(rand.NextDouble() * 65); |
| | | |
| | | bool done = false; |
| | | while (!done) |
| | | { |
| | | for (int i = 0; i < 64; i++) |
| | | { |
| | | if (i < t1) |
| | | val[i] = (byte)(rand.NextDouble() * 256); |
| | | else |
| | | val[i] = 0; |
| | | |
| | | if (val[i] != 0) |
| | | done = true; |
| | | } |
| | | } |
| | | |
| | | done = false; |
| | | while (!done) |
| | | { |
| | | for (int i = 0; i < 64; i++) |
| | | { |
| | | if (i < t2) |
| | | val2[i] = (byte)(rand.NextDouble() * 256); |
| | | else |
| | | val2[i] = 0; |
| | | |
| | | if (val2[i] != 0) |
| | | done = true; |
| | | } |
| | | } |
| | | |
| | | while (val[0] == 0) |
| | | val[0] = (byte)(rand.NextDouble() * 256); |
| | | while (val2[0] == 0) |
| | | val2[0] = (byte)(rand.NextDouble() * 256); |
| | | |
| | | Console.WriteLine(count); |
| | | BigInteger bn1 = new BigInteger(val, t1); |
| | | BigInteger bn2 = new BigInteger(val2, t2); |
| | | |
| | | |
| | | // Determine the quotient and remainder by dividing |
| | | // the first number by the second. |
| | | |
| | | BigInteger bn3 = bn1 / bn2; |
| | | BigInteger bn4 = bn1 % bn2; |
| | | |
| | | // Recalculate the number |
| | | BigInteger bn5 = (bn3 * bn2) + bn4; |
| | | |
| | | // Make sure they're the same |
| | | if (bn5 != bn1) |
| | | { |
| | | Console.WriteLine("Error at " + count); |
| | | Console.WriteLine(bn1 + "\n"); |
| | | Console.WriteLine(bn2 + "\n"); |
| | | Console.WriteLine(bn3 + "\n"); |
| | | Console.WriteLine(bn4 + "\n"); |
| | | Console.WriteLine(bn5 + "\n"); |
| | | return; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Tests the correct implementation of the modulo exponential function |
| | | // using RSA encryption and decryption (using pre-computed encryption and |
| | | // decryption keys). |
| | | //*********************************************************************** |
| | | |
| | | public static void RSATest(int rounds) |
| | | { |
| | | Random rand = new Random(1); |
| | | byte[] val = new byte[64]; |
| | | |
| | | // private and public key |
| | | BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16); |
| | | BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16); |
| | | BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16); |
| | | |
| | | Console.WriteLine("e =\n" + bi_e.ToString(10)); |
| | | Console.WriteLine("\nd =\n" + bi_d.ToString(10)); |
| | | Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); |
| | | |
| | | for (int count = 0; count < rounds; count++) |
| | | { |
| | | // generate data of random length |
| | | int t1 = 0; |
| | | while (t1 == 0) |
| | | t1 = (int)(rand.NextDouble() * 65); |
| | | |
| | | bool done = false; |
| | | while (!done) |
| | | { |
| | | for (int i = 0; i < 64; i++) |
| | | { |
| | | if (i < t1) |
| | | val[i] = (byte)(rand.NextDouble() * 256); |
| | | else |
| | | val[i] = 0; |
| | | |
| | | if (val[i] != 0) |
| | | done = true; |
| | | } |
| | | } |
| | | |
| | | while (val[0] == 0) |
| | | val[0] = (byte)(rand.NextDouble() * 256); |
| | | |
| | | Console.Write("Round = " + count); |
| | | |
| | | // encrypt and decrypt data |
| | | BigInteger bi_data = new BigInteger(val, t1); |
| | | BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); |
| | | BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); |
| | | |
| | | // compare |
| | | if (bi_decrypted != bi_data) |
| | | { |
| | | Console.WriteLine("\nError at round " + count); |
| | | Console.WriteLine(bi_data + "\n"); |
| | | return; |
| | | } |
| | | Console.WriteLine(" <PASSED>."); |
| | | } |
| | | |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Tests the correct implementation of the modulo exponential and |
| | | // inverse modulo functions using RSA encryption and decryption. The two |
| | | // pseudoprimes p and q are fixed, but the two RSA keys are generated |
| | | // for each round of testing. |
| | | //*********************************************************************** |
| | | |
| | | public static void RSATest2(int rounds) |
| | | { |
| | | Random rand = new Random(); |
| | | byte[] val = new byte[64]; |
| | | |
| | | byte[] pseudoPrime1 = { |
| | | (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A, |
| | | (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C, |
| | | (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3, |
| | | (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41, |
| | | (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56, |
| | | (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE, |
| | | (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41, |
| | | (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA, |
| | | (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF, |
| | | (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D, |
| | | (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3, |
| | | }; |
| | | |
| | | byte[] pseudoPrime2 = { |
| | | (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7, |
| | | (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E, |
| | | (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3, |
| | | (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93, |
| | | (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF, |
| | | (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20, |
| | | (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8, |
| | | (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F, |
| | | (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C, |
| | | (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80, |
| | | (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB, |
| | | }; |
| | | |
| | | |
| | | BigInteger bi_p = new BigInteger(pseudoPrime1); |
| | | BigInteger bi_q = new BigInteger(pseudoPrime2); |
| | | BigInteger bi_pq = (bi_p - 1) * (bi_q - 1); |
| | | BigInteger bi_n = bi_p * bi_q; |
| | | |
| | | for (int count = 0; count < rounds; count++) |
| | | { |
| | | // generate private and public key |
| | | BigInteger bi_e = bi_pq.genCoPrime(512, rand); |
| | | BigInteger bi_d = bi_e.modInverse(bi_pq); |
| | | |
| | | Console.WriteLine("\ne =\n" + bi_e.ToString(10)); |
| | | Console.WriteLine("\nd =\n" + bi_d.ToString(10)); |
| | | Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n"); |
| | | |
| | | // generate data of random length |
| | | int t1 = 0; |
| | | while (t1 == 0) |
| | | t1 = (int)(rand.NextDouble() * 65); |
| | | |
| | | bool done = false; |
| | | while (!done) |
| | | { |
| | | for (int i = 0; i < 64; i++) |
| | | { |
| | | if (i < t1) |
| | | val[i] = (byte)(rand.NextDouble() * 256); |
| | | else |
| | | val[i] = 0; |
| | | |
| | | if (val[i] != 0) |
| | | done = true; |
| | | } |
| | | } |
| | | |
| | | while (val[0] == 0) |
| | | val[0] = (byte)(rand.NextDouble() * 256); |
| | | |
| | | Console.Write("Round = " + count); |
| | | |
| | | // encrypt and decrypt data |
| | | BigInteger bi_data = new BigInteger(val, t1); |
| | | BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n); |
| | | BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n); |
| | | |
| | | // compare |
| | | if (bi_decrypted != bi_data) |
| | | { |
| | | Console.WriteLine("\nError at round " + count); |
| | | Console.WriteLine(bi_data + "\n"); |
| | | return; |
| | | } |
| | | Console.WriteLine(" <PASSED>."); |
| | | } |
| | | |
| | | } |
| | | |
| | | |
| | | //*********************************************************************** |
| | | // Tests the correct implementation of sqrt() method. |
| | | //*********************************************************************** |
| | | |
| | | public static void SqrtTest(int rounds) |
| | | { |
| | | Random rand = new Random(); |
| | | for (int count = 0; count < rounds; count++) |
| | | { |
| | | // generate data of random length |
| | | int t1 = 0; |
| | | while (t1 == 0) |
| | | t1 = (int)(rand.NextDouble() * 1024); |
| | | |
| | | Console.Write("Round = " + count); |
| | | |
| | | BigInteger a = new BigInteger(); |
| | | a.genRandomBits(t1, rand); |
| | | |
| | | BigInteger b = a.sqrt(); |
| | | BigInteger c = (b + 1) * (b + 1); |
| | | |
| | | // check that b is the largest integer such that b*b <= a |
| | | if (c <= a) |
| | | { |
| | | Console.WriteLine("\nError at round " + count); |
| | | Console.WriteLine(a + "\n"); |
| | | return; |
| | | } |
| | | Console.WriteLine(" <PASSED>."); |
| | | } |
| | | } |
| | | } |
| | | } |